PERT-метод

РЕКТ использует 3 оценки расчета времени для каждой операции: оптимистичная t_O , наиболее вероятная t_M , пессимистическая t_P . Это означает, что продолжительность каждой операции может изменяться в пределах от оптимистического значения до пессимистического. По ним можно рассчитать средневзвешенную оценку продолжительности работы t_{PERT} и средневзвешенное значение продолжительности всего проекта T_E , как сумма средневзвешенных значений продолжительности работ, находящихся на критическом пути:

$$t_{PERT} = \frac{t_O + 4t_M + t_P}{6}. (1)$$

Продолжительность операции рассматривается как случайная величина, подчиненная β -распределению. Так как продолжительность проекта определяется продолжительностью операций, находящихся на критическом пути, то и продолжительность всего проекта представляет собой случайную величину, но уже подчиненную нормальному закону.

Для каждой операции рассчитывается стандартное отклонение:

$$\sigma_{t_e} = \frac{t_P - t_O}{6}, \qquad (2)$$

а затем определяется стандартное отклонение для продолжительности всего проекта, как корень квадратный из суммы квадратов стандартных отклонений длительности операций, находящихся на критическом пути:

$$\sigma_{T_E} = \sqrt{\sum \sigma_{t_e}^2} \ . \tag{3}$$

Для оценки вероятности выполнения проекта за требуемый промежуток времени T_S рассчитывается статистика Z

$$Z = \frac{T_S - T_E}{\sqrt{\sum \sigma_{t_e}^2}} \ . \tag{4}$$

Значение статистики Z и соответствующие значения вероятностей p приведены в таблице 1.

Таблица 1 - Z статистика

Z	p	Z	p	Z	p	Z	p	Z	p
-2,0	0,02	-0,7	0,24	-0,1	0,38	0,5	0,69	1,5	0,93
-1,5	0,07	-0,5	0,31	0,1	0,54	0,7	0,76	2,0	0,98
-1,0	0,16	-0,3	0,36	0,3	0,62	1,0	0,84		

Пример. Используя PERT-метод определить вероятность завершения проекта за $T_S = 67$ единиц времени. Исходные данные для проекта приведены в таблице 2.

Сетевой график типа ОС (операции на стрелках) по данным таблицы 2 приведен на рисунке 1. Для каждой операции проекта, зная оптимистическую оценку продолжительности операции a, пессимистическую оценку продолжительности операции b и наиболее вероятную оценку m, следует рассчитать средневзвешенную оценку её t_e продолжительности по формуле (5). Подученные значения t_e указаны на сетевом графике

Таблица 2 – Исходные данные для проекта

Операция	а	b	m	t_e	σ_{t_e}
1-2	17	47	29	30	5
2-3	6	24	12	13	3
2-4	16	28	19	20	2
3-5	13	19	16	16	1
4-5	2	14	5	6	2
5-6	2	8	5	5	1

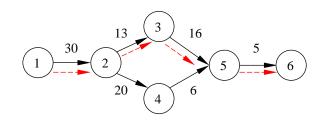


Рисунок 2 – Сетевой график проекта

Критический путь составляют операции 1-2, 2-3, 3-5, 5-6, тогда средневзвешенное значение продолжительности всего проекта T_E =64.

Для всех операции рассчитывается стандартное отклонение длительности операций σ_{t_e} по формуле (2). А затем определяется стандартное отклонение для продолжительности всего проекта σ_{T_E} , как корень квадратный из суммы квадратов стандартных отклонений длительности *операций*, находящихся на критическом пути (3):

$$\sigma_{T_E} = \sqrt{\sigma_{1-2}^2 + \sigma_{2-3}^2 + \sigma_{3-5}^2 + \sigma_{5-6}^2} = \sqrt{5^2 + 3^2 + 1^2 + 1^2} = 6.$$

Для оценки вероятности выполнения проекта за требуемый промежуток времени $T_S = 67$ по формуле (4) рассчитывается статистика Z:

ток времени
$$T_S=67$$
 по формуле (4) рассчитывается статистика Z :
$$Z=\frac{T_S-T_E}{\sigma_{T_E}}=\frac{67-64}{6}=0,5.$$

По таблице 1, зная значение Z статистики, определим вероятность завершения проекта за 67 единиц времени, она составляет 69%.